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Structural magnetic resonance imaging (sMRI), which can reflect cerebral atrophy, plays an important role
in the early detection of Alzheimer’s disease (AD). However, the information provided by analyzing only the
morphological changes in sMRI is relatively limited, and the assessment of the atrophy degree is subjective.
Therefore, it is meaningful to combine sMRI with other clinical information to acquire complementary diagno-
sis information and achieve a more accurate classification of AD. Nevertheless, how to fuse these multi-modal
data effectively is still challenging. In this paper, we propose DE-JANet, a unified AD classification network
that integrates image data sMRI with non-image clinical data, such as age and Mini-Mental State Examination
(MMSE) score, for more effective multi-modal analysis. DE-JANet consists of three key components: (1) a dual
encoder module for extracting low-level features from the image and non-image data according to specific
encoding regularity, (2) a joint attention module for fusing multi-modal features, and (3) a token classification
module for performing AD-related classification according to the fused multi-modal features. Our DE-JANet is
evaluated on the ADNI dataset, with a mean accuracy of 0.9722 and 0.9538 for AD classification and mild
cognition impairment (MCI) classification, respectively, which is superior to existing methods and indicates
advanced performance on AD-related diagnosis tasks.

1. Introduction

Alzheimer’s disease(AD) is an irreversible chronic neurodegenera-
tive disease with symptoms of progressive cognitive impairment [1],
and until now there are no any effective treatments. About 60%-—
80% among AD patients are dementia cases, resulting in serious social
problems [2]. Therefore, it is of great importance to diagnose AD early
and carry out the clinical intervention in advance to slow down its
progression. This has led to a significant amount of research focusing on
developing intelligent methods for diagnosing AD [3,4]. And different
biomarkers have been developed for the diagnosis of AD and its prodro-
mal stage, i.e. mild cognition impairment (MCI), such as neuroimaging
measures and neuropsychological test data [5].

Structural magnetic resonance imaging (sMRI), a typical kind of
neuroimaging measure, can reveal the changes in cerebral anatomical
structure induced by the AD process [6] as shown in Fig. 1. For
example, there is cerebral cortex atrophy and ventricle enlargement in
the brains of individuals with MCI and AD when compared to those
with normal control (NC). The magnitude of brain changes increases

as the disease progression becomes more severe. The features extracted
from sMRI, such as cortical thickness, texture, and volume, can capture
brain changes and serve as effective biomarkers for diagnosing AD.
The existing methods [7] are devoted to capturing these morphological
characteristics for the early diagnosis of AD. According to the different
feature extraction levels from sMRI, almost all methods based on sMRI
are divided into three categories: (1) 3D patch-level methods [8,9]
segmenting the whole sMRI into fixed-size patches before feature ex-
traction, (2) 3D regions-of-interest(ROIs)-level methods [10] extracting
features from anatomical brain template aligned regions, and (3) 3D
subject-level methods [11,12] processing the whole sMRI to obtain
voxel-wise pathological features.

Besides neuroimaging measures, the neuropsychological test data
can assess the severity of cognitive impairment to estimate the course
of AD [5]. For example, the Mini-Mental State Examination(MMSE)
score, a neuropsychological assessment variable with a scoring range
of 0 to 30, can indicate the degree of cognitive impairment, where a
lower MMSE score indicates more severe cognitive impairment [13].
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Fig. 1. Examples of sMRI images of NC brain (left), MCI brain (center), and AD brain (right).

Moreover, demographic data, such as age, are also considered a com-
plementary modality. Since aging can cause the brain to shrink and
the level of memory impairment to rise, older people are more likely
to develop AD [14]. And it has been proven that the prevalence of AD
increases with age [15]. Therefore, the magnitude features of age, as
well as the MMSE score, can provide the cognitive state information
for the diagnosis of AD. The different biomarkers mentioned above
expose different pathological information related to AD, resulting in
providing comprehending complementary knowledge and facilitating a
more accurate diagnosis [16]. This has led to the rapid development of
AD classification methods based on multi-modal data [17].

First, among different biomarkers, sMRI is a non-invasive method of
obtaining information related to AD by subjectively assessing cerebral
morphological changes, which requires rich experience. While age
and MMSE score can help evaluate cognitive function in an intuitive
quantitative way. By combining these different biomarkers, doctors and
researchers can gain a more complete understanding of brain health
and cognitive function in individuals. Furthermore, these biomarkers
are relatively easy to obtain and cost-effective. Therefore, it is supe-
rior to integrate sMRI, age, and MMSE score for AD classification.
Second, among the multi-modal-based methods, how to explore the
correlation between multi-modal data or construct informative fusion
features is the key problem. Whereas, most of the previous methods
just simply concatenate multi-modal features and pay less attention
to the joint modeling for obtaining multi-modal features [18]. The
emergence of Transformer [19] and especially its derivation vision
Transformer(ViT) [20] provides new insights for multi-modal data
fusion [21]. Owing to its strong self-attention strategy, the data from
different modalities can be integrated into a one-dimensional long
sequence to capture long-range dependence and be interacted with each
other for joint modeling [22]. However, previous studies have found
that using tokens obtained by directly encoding inputs with ViT cannot
produce satisfactory results for downstream tasks [23]. The reason is
that ViT regards the inputs as one-dimensional sequences and solely
emphasizes modeling the global features throughout all stages, leading
to a lack of local spatial information on the low-level features.

In this paper, we propose a unified AD classification framework,
namely DE-JANet, which designs two specific encoders to extract low-
level features of the inputted multi-modal data and then adopts ViT to
model and fuse these features jointly. Specifically, DE-JANet consists
of three modules: (1) dual encoder module, (2) joint attention module,
and (3) token classification module. The dual encoder module, includ-
ing convolutional neural network (CNN) encoder and linear encoder,
is designed to separately extract the local spatial features of sMRI
and magnitude features of age and MMSE score. The joint attention
module defined with ViT is proposed to enable interaction between the
extracted low-level features to obtain the fused global features from
multi-modal data. Finally, a token classification module is constructed

to conduct AD-related diagnoses according to the fused global fea-
tures. We evaluated DE-JANet on Alzheimer’s Disease Neuroimaging
Initiative (ADNI) datasets for two AD-related diagnosis tasks which
are AD classification, i.e. AD vs NC, and MCI classification, i.e. MCI
vs NC. Experimental results prove that our proposed DE-JANet can
achieve superior classification performance compared with the existing
state-of-the-art methods.
Our contributions are summarized as follows:

» We develop a novel joint modeling strategy that integrates image
and non-image features effectively to facilitate downstream tasks.

» The DE-JANet employs a hybrid dual encoder-joint attention
structure to compensate for the limitations of ViT in spatial detail
extraction, by transferring low-level features from dual encoders
to the joint attention module.

» Experimental results demonstrate that DE-JANet outperforms the
existing methods on AD classification and MCI classification.

The remainder of this paper proceeds as follows. We give a brief
review of related works in Section 2. Then, the studied datasets and
our proposed network are introduced in detail in Sections 3 and 4. Next,
we evaluate DE-JANet by comparing it to the existing state-of-the-art
methods and analyzing its components in Section 5. Meanwhile, the
limitations and future work of our study are analyzed. Finally, we draw
a conclusion for this paper in Section 6. And for a better understanding
of all abbreviations, we summarize them in Table 1.

2. Related work
2.1. Multi-modal-based methods

Many studies have already focused on AD classification using multi-
modal data from the ADNI dataset. These multi-modal-based methods
incorporate complementary pathological information from multi-modal
data to achieve better classification performance by adopting different
feature fusion strategies [18]. A straightforward method is to concate-
nate the multi-modal features from multiple modalities into a unified
representation. For example, Jun et al. [24] proposed the multi-modal
stacked deep polynomial network to fuse the ROI-based volume fea-
tures from MRI and average intensity features from Positron Emission
Tomography(PET) images. Suk et al. [25] concatenated the ROI-based
features from MRI and PET images with the cerebrospinal fluid(CSF)
biomarker measures, and then performed weighted feature selection
and classifier learning for AD diagnosis. Qiu et al. [26] concatenated
the whole sMRI features with normalized age, gender, and MMSE score,
and applied multilayer perceptron (MLP) for classification. While the
concatenation operation is easy to implement and can handle various
modal data, it fails to fully explore the internal relationship between
different modal data [27].
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Table 1
A summary of abbreviations.

Abbreviation Full name Description

DE-JANet Network based on Dual Encoder and Joint Attention Our proposed method

AD Alzheimer’s Disease

MCI Mild Cognition Impairment Class label of clinical status
NC Normal Control

sMRI structural Magnetic Resonance Imaging

MMSE Mini-Mental State Examination Biomarker meastres

PET Positron Emission Tomograph

CSF Cerebrospinal Fluid

ADNI Alzheimer’s Disease Neuroimaging Initiative Dataset

MNI Montreal Neurological Institute A standard brain template space
ROIs Regions-of-Interest The specific regions in image
ViT Vision Transformer

CNN Convolutional Neural Network

MLP Multilayer Perceptron

FCN Fully Connected Network Network structure

3dConv three-dimensional Convolutional layer

BN Batch Normalization

ReLU Rectified Linear Unit

ACC, PRE, SEN, SPE Accuracy, Precision, Sensitivity, Specificity

ROC Receiver Operating Characteristic Validation metrics

AUC the Area Under Curve

Some studies designed specific feature fusion strategies for exploring
the associations among multiple modalities [28]. Tong et al. [29] cre-
ated pairwise similarity graphs for each modality by utilizing different
features from MRI, PET, CSF biomarkers, and genetic data, followed by
employing a nonlinear graph fusion technique to merge these similarity
graphs into a unified graph for the final classification. Bi et al. [30]
proposed “brain region-gene pairs” as multi-modal features by apply-
ing canonical correlation analysis methods to capture the associations
between MRI images and gene data. Liu et al. [31] adopted a stacked
autoencoder framework with a zero-masking strategy for data fusion
to extract complementary information from MRI and PET images. Ning
et al. [32] and Lei et al. [33] incorporated relational regularization
terms, such as Frobenius norm and /,,-norm, into the loss function,
aiming to constrain the feature extraction and encourage learning of
intrinsic associations inherent in MRI and PET images. However, these
specific strategies are sensitive to the allocation of weights to each reg-
ularization term or each modality, which often require computationally
expensive optimization methods [34]. Furthermore, while these studies
do well in the fusion of different modalities of images, there is still
significant room for modeling the associations between images and
non-image data. In this paper, our joint attention strategy focuses on
capturing the interaction information between image and non-image
data, without the need to learn sensitive parameters for each modality.

2.2. ViT-based methods

Transformer [19] was first proposed for natural language processing
tasks and has made great achievements as its powerful ability in cap-
turing global context information. Subsequently, lots of derivations [20,
35] of Transformer have been developed for computer vision tasks. For
example, Alexey et al. [20] designed ViT for image recognition, using
only Transformer encoders followed by an MLP head. Moreover, Wang
et al. [36] and Chen et al. [37] integrated ViT into 3D U-net-based
CNN [38] for medical image segmentation. Xie et al. [39] improved
the ViT in the 3D segmentation model by adopting a deformable self-
attention strategy, which only performed self-attention on key pixels.
These methods have started to integrate Transformer and CNN net-
works for medical segmentation tasks, while the application of ViT
in medical image classification can be further studied. Dai et al. [40]
constructed a 2D classification model for preoperative diagnosis of
parotid gland tumors by integrating CNN and ViT. However, the 2D
slices cannot provide complete structural information, thereby affecting

diagnostic accuracy. Moreover, such methods are limited to handling
single-modality data.

With regard to processing multi-modal data, Lu et al. [41] proposed
a two-stream network called ViLBERT, which first processed different
modalities separately and then utilized a cross-Transformer to capture
the interactions between modalities. Su et al. [42] proposed a single-
stream network called VL-BERT, which simultaneously processed both
images and texts in a single Transformer channel. Both ViLBERT and
VLBERT can aggregate multi-modal information, but ViLBERT has
more parameters than VL-BERT due to its cross-Transformer structure,
making it more challenging to train [43]. Moreover, these models
require pre-training on large-scale datasets to achieve better generaliza-
tion [41,42]. When using a single Transformer channel for multi-modal
medical data fusion, we design specific encoders for different modalities
to capture prior features, making it easier to obtain complementary
information during fusion. In this way, we can perform downstream
classification tasks without pre-training operations like VL-BERT.

3. Data acquisition and pre-processing

The datasets studied in this paper are acquired from the public
Alzheimer’s Disease Neuroimaging Initiative [44], namely ADNI-1 and
ADNI-2. They are two separate datasets from different phases of ADNI
and different subjects so as to eliminate the leakage of test data.
The demographic information of all subjects in ADNI-1 and ADNI-2 is
presented in Table 2.

In the ADNI-1 dataset, there are 1.5T T1-weighted sMRI scans from
617 subjects. These subjects are divided into three categories: AD, MCI,
and NC, according to the standard clinical criteria. To sum up, the
ADNI-1 dataset consists of 152 AD, 249 MCI, and 216 NC subjects. The
ADNI-2 dataset includes 3T T1-weighted sMRI scans collected from 160
subjects. Similarly, the 160 subjects are divided into 56 AD, 52 MCI,
and 52 NC subjects.

The sMRI scans downloaded from ADNI have undergone specific
standardized processing steps for eliminating gradient nonlinearity
and intensity non-uniformity, including multiplanar reconstruction, 3D
Gradwarp correction [45], B1 non-uniformity correction [46], and
N3 intensity normalization [47]. On this basis, we perform linear
registration of sMRI to the Montreal Neurological Institute (MNI)
152 [48] using the FSL toolbox [49], of which MNI 152 is a standard
brain template space to remove global linear differences and unify the
coordinate space. After that, the sMRI scans have a uniform size of
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Table 2
Demographic information of the subjects involved in the studied datasets (i.e. the ADNI-1 and ADNI-2), including
status, gender, age, and MMSE.
Dataset Status Gender Age MMSE
(Male/Female) (Mean =+ Std) (Mean =+ Std)
AD 77/75 75.53 + 7.48 23.39 + 2.06
ADNI1 MCI 159/90 75.84 + 7.11 26.26 + 2.85
NC 115/101 76.82 + 5.47 28.91 + 1.25
AD 31/25 75.89 + 8.16 20.30 + 4.51
ADNI-2 MCI 33/19 80.67 + 6.67 22.36 + 4.84
NC 25/27 77.85 + 6.04 29.29 + 0.98
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Fig. 2. Illustration of our DE-JANet including three components: (1) dual encoder module, (2) joint attention module, and (3) token classification module.
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Fig. 3. Illustration of CNN encoder for image data.
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181 x 217 x 181 voxels. Then, we further normalize voxels, clip out
the intensity outliers and remove background interference to complete
the image pre-processing.

4. Methodology

As shown in Fig. 2, our unified network is constructed based on
three sequential components, i.e. (1) dual encoder module, (2) joint
attention module, and (3) token classification module. Briefly, the dual
encoder module consists of a CNN encoder for image data and a linear

encoder for non-image data. Then, the image and non-image features
interact with each other in the joint attention module to obtain the
fused global features that incorporate multi-modal information. Finally,
the token classification module generates the class-predicted scores for
each subject according to the global features.

4.1. Dual encoder module

4.1.1. CNN encoder for image data

The encoder for image data is built based on an ordinary 3D CNN.
As shown in Fig. 3, the CNN encoder comprises four encoding blocks
with the same structure. Specifically, each encoding block contains one
three-dimensional convolutional (3dConv) layer with different kernel
sizes, including 7 x 7 x 7 layer (i.e. 3dConv-1), 4 x 4 x 4 layer
(i.e. 3dConv-2), 3 x 3 x 3 layer (i.e. 3dConv-3 and 3dConv-4). The
number of channels for 3dConv-1 to 3dConv-4 is 64, 128, 256, and
521, respectively. And the stride of 3dConv-1 is 2, while the rest is
1. Besides, one 3 x 3 x 3 maxpooling operation (i.e. Maxpooling-
1) and three 2 x 2 x 2 maxpooling operations (i.e. Maxpooling-2 to
Maxpooling-4) are adopted to down-sample the feature maps produced
by each 3dConv layer, which are followed by batch normalization
(BN) and rectified linear unit (ReLU) activations. And the stride of
Maxpooling-4 is 1, while the rest is 2. At the end of each encoding
block, a dropout layer with a dropout rate of 0.2 is added to avoid
overfitting.
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Fig. 4. Illustration of the Linear encoder for non-image data.
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4.1.2. Linear encoder for non-image data

Since concatenating normalized non-image data with image features
straightforwardly often results in poorer performance [50], we design
a linear encoder inspired by the concept of word embedding to convert
each non-image data into a vector. In this way, we can capture the
magnitude features of non-image data for the subsequent multi-modal
feature interaction.

Specifically, as shown in Fig. 4, the linear encoder is composed of
mapping encoding and linear projection. Considering that both age and
MMSE score have a range of values, we adopt the relative position of
their corresponding values within a fixed interval as their magnitude
features. Firstly, we conduct interval mapping for age or MMSE score,
which involves projecting these variables into a fixed interval by a
lower bound (L), an upper bound (U), and an interval of 0.5, to
obtain their position index v with relatively significant differences.
Specifically, the MMSE score has a fixed range, with a lower bound (L)
of 0 and an upper bound (U) of 30. Based on the age range present in
the dataset used, we have set the lower bound (L) for age as 50 and the
upper bound (U) as 100. Then, the position index value v is encoded
using the sinusoidal function M E(v, k). This function enables capturing
relative positioning easily, as M E(v+ o, k) can be expressed as a linear
function of M E(v, k) for any fixed offset 0[24]. M E(v, k) is defined as
follows.

ME(v, k) = {

where i = 0,1,2,...,d/2 — 1 is the dimension and d is the size of the
encoding. After applying the mapping encoding technique, both age
and MMSE score are encoded as a positional feature vector of length d.
Lastly, the feature vector is further projected linearly through two fully
connected layers, with the first layer consisting of 128 neurons and the
second layer consisting of 512 neurons, resulting in a final vector size
of 1 x 512.

As a result, the magnitude features of the non-image data are well
extracted and projected to the same dimension, expressed as:

sin(v/10%/d), k=2i

@)
cos(v/10%&=D/dy o =2 41

F4q. = Linear_Projection (M E (Age)) (3a)

Fyrymsg = Linear_Projection(M E (MM SE)) (3b)

4.2. Joint attention module

The dual encoder module extracts the local spatial features from
sMRI and magnitude features from age and MMSE score, respectively.
However, it does not yet capture the long-range dependence and the
correlation between multi-modal data. Therefore, in this section, we

introduce ViT and model these multi-modal features jointly to com-
pensate for the limitations. In this way, we effectively bridge the
CNN encoder, linear encoder, and Transformer to enhance feature
robustness.

In order to facilitate capturing long-range dependence of image
volumes, the image volume features are first projected into a long
linear sequence with the same channel as the non-image features. And
then, in order to facilitate capturing the correlation between image
and non-image features, the flattened image features are concatenated
with the encoding features of age and MMSE score to form con-
catenated multi-modal features which do not contain any interaction
information. Before joint modeling, we perform position embedding
on the concatenated multi-modal features uniformly to maintain po-
sitional information. Besides, we prepend a learnable class token in
front of the concatenated multi-modal feature sequences to capture
the unified global information between image and non-image features.
The class token is defined by random trainable parameters. As for
position embedding, we generate random parameters that satisfy the
standard normal distribution, and then perform element-wise addition
on the generated position parameters and the concatenated multi-
modal features, as well as the class token. Last, we input the embedded
multi-modal features into the Transformer layer to model jointly. The
Transformer layer includes a multi-head attention layer and a feed-
forward layer, both following the layer normalization. The multi-head
attention layer is a crucial component of the Transformer model, which
leverages a self-attention strategy to enable internal interaction and
capture correlations among multi-modal features. Specifically, The ex-
act implementation process for the Transformer layer is identical to that
for ViT [20].

After being processed by Transformer, the learned class token is
obtained and is used to predict the class of the subject. We can explain
the joint attention module with the following formulas.

Fnon—image = [FAge; Fyrmsel (4a)
X fusion = Trans([x.; Linear_Projection(Fy,.e.); 4b)

me—image] @ PE)[ s 0]

where X, represents a fused global multi-modal feature. x., is
a class token. PE is the position embedding parameter. [;] performs
concatenate operation. [:,0] denotes the elements with an index of
0 in the Transformer outputs, that is x,, after being processed by
Transformer. Trans represents the Transformer layer.

4.3. Token classification module

We get the fused global multi-modal feature X ,;,, from the joint
attention module. Owing to the internal interaction between the image
and non-image features, X, integrates the complementary infor-
mation and correlations between them. For example, image features
provide the pathological representations of the sMRI images, i.e. the
changes in cerebral anatomical structure, and non-image features sup-
ply the clinical criteria reference and cognitive function assessment.
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Both of these features make a great contribution to the AD-related
classification tasks and form the fused global feature vector X,
jointly. In this section, X/, is fed into the token classification module
which adopts MLP as the classifier to yield class predictive scores.
Specifically, the fused feature vectors with a size of 1 x 512 are
processed by the MLP which consists of two fully connected layers.
Finally, the MLP outputs the predicted probabilities of each class.

5. Experiments and analyses

Our experiments focus on two AD-related binary classification tasks,
i.e. AD vs NC and MCI vs NC. We first compare our DE-JANet with sev-
eral state-of-the-art methods to prove its superiority. Then, we perform
ablation studies to validate the effectiveness of the components in DE-
JANet, including the linear encoder, the multi-modality, and the joint
attention.

5.1. Experimental settings

Our DE-JANet is implemented using Python based on the PyTorch
package and is trained 100 epochs on a single GPU (i.e. NVIDIA
GeForce GTX 1080). The size of the mini-batch is set as 4, and the
number of the Transformer layer is 2. We adopt weighted cross-entropy
loss to learn our DE-JANet and Adam optimizer for minimizing the
loss function with an initial learning rate of 107°. We verify that the
model with these hyperparameter configurations achieves the highest
accuracy. For example, Fig. 5 illustrates the variation of classification
accuracy with the number of Transformer layers, indicating that the
best performance is achieved when the number of layers is 2. The
DE-JANet is trained on ADNI-1 and then tested on the other indepen-
dent dataset, i.e. ADNI-2, which demonstrates the generalization of
our method. This process is repeated five times, and performance is
presented as mean over the model runs.

For AD classification, we train our model using 152 AD subjects and
185 NC subjects from the ADNI-1 dataset. For MCI classification, we
train our model using 249 MCI subjects and 216 NC subjects from the
ADNI-1 dataset. We randomly select about 25 percent training samples
as the validated set and tune our model according to the validation
performance in terms of five typical metrics, including accuracy (ACC),
precision (PRE), sensitivity (SEN), specificity (SPE), and F1 score, that
are formulated as:

ACC=(TP+TN)/(TP+TN+FP+FN) (5a)
PRE=TP/(TP+ FP) (5b)

SEN =TP/(TP+ FN) (50)
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SPE=TN/(TN + FP) (5d)

F1=2XTP/2xTP+ FP+FN) (5e)

where TP, TN, FP, and FN denote, respectively, the true positive,
true negative, false positive, and false negative values. Besides, receiver
operating characteristic (ROC) curves and the area under curve (AUC)
value are also provided for further evaluation.

5.2. Comparison experiments

In the comparative experiments, the entire experimental process,
parameter settings, and data used are consistent with those described
in Section 5.1. When conducting the comparisons, we simply replaced
our feature fusion strategy or model with other comparative methods.

5.2.1. Comparisons with different feature fusion strategies

We adopt a single-stream joint attention strategy for feature fusion,
where the position embedding is uniformly added to the concatenated
multi-modal features, with a class token prepend to them. After joint
attention operation, we directly obtained the fused global features for
classification. To evaluate the performance of our single-stream joint
attention strategy, we try another kind of two-stream self-attention
strategy with different feature fusion ways, including element-wise
addition, element-wise product, and concatenation. In the two-stream
self-attention strategy, the position embeddings are added to image
features and non-image features respectively, and then the image fea-
tures and non-image features are separately fed into the self-attention
Transformer layer for modeling their respective global features. Finally,
the two global feature vectors from image and non-image data are fused
in the abovementioned three ways. Besides, we try another two-stream
cross-attention strategy [51] for feature fusion. The flow diagram of
the two-stream attention strategy and their performance on the ADNI-2
dataset are shown in Figs. 6 and 7, respectively.

As Fig. 7 shows, our single-stream joint attention strategy is su-
perior to the two-stream self-attention strategies using the abovemen-
tioned three feature fusion methods, as well as the two-stream cross-
attention strategy. Although the two-stream self-attention strategies
achieve slightly better results on the metric SEN, our method still
performs better in the comprehensive evaluation metric F1 score. These
reflect that the fusion features we constructed are more beneficial for
downstream classification tasks. This is because the joint attention
strategy enables deep interaction between low-level features of the
image and non-image data, which helps to explore complementary in-
formation among multi-modal features. In contrast, the two-stream self-
attention strategies only use simple operations to integrate multi-modal
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Table 3
Results of AD classification and MCI classification obtained by our DE-JANet and the competing methods [26,50,51] on ADNI-2 datasets. The best results are in bold.
AD vs NC MCI vs NC
Method
ACC PRE SEN SPE F1 ACC PRE SEN SPE F1
Qiu et al. [26] 2020 0.9457 0.9180 0.9756 0.9179 0.9456 0.8506 0.7979 0.9436 0.7577 0.8639
Liu et al. [50] 2020 0.9648 0.9666 0.9615 0.9679 0.9636 0.8558 0.8503 0.8654 0.8462 0.8575
Golovanevsky et al. [51] 2022 0.8407 0.8059 0.8962 0.7893 0.8458 0.7846 0.7607 0.8269 0.7423 0.7904
Our DE-JANet 0.9722 0.9623 0.9808 0.9643 0.9714 0.9538 0.9802 0.9269 0.9808 0.9523
AD vs NC both classification tasks on ADNI-2 datasets, especially for MCI clas-
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Fig. 7. Performance comparisons of different feature fusion strategies on AD
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features. Besides, although the two-stream cross-attention strategy also
captures the interaction between different modal features, it involves
separately processing the sequences and then combining the tokens
together, which does not result in a prominent joint modeling effect.

5.2.2. Comparisons with competing methods

We strictly compare our DE-JANet with three multi-modal-based
methods [26,50,51] by repeating these methods in a unified experi-
mental setting and sharing the same multi-modal training and test data
including sMRI, age, and MMSE score. The key differences among them
are the encoding schemes of non-image data and the fusion methods of
multi-modal data. Specifically, Qiu et al. [26] designed a two-step deep
learning framework. Firstly, the fully connected network (FCN) model
is developed for extracting disease probability maps using randomly
selected fixed-size patches from the whole sMRI. Then, the high-risk
disease probability maps are selected and integrated alongside non-
image data to develop an MLP fusion model for AD classification. Liu
et al. [50] concatenated the encoded non-image features to the output
of an ordinary 3D CNN trained using sMRI for AD classification. And
Golovanevsky et al. [51] used cross-modal attention to capture the
interaction between sMRI and non-image data after being processed
by CNN or FCN and self-attention, respectively. Table 3 presents the
results of the two binary classification tasks obtained by our method
and the competing methods [26,50,51].

The following observations can be summarized from Table 3. (1)
Our DE-JANet outperforms three competing methods [26,50,51] on

sification. For example, the ACC and F1 score of DE-JANet and [26]
for MCI classification are 0.9538 versus 0.8506 and 0.9523 versus
0.8639, respectively. One reason for the performance improvement is
that we design the linear encoder to extract magnitude features of
age and MMSE score considering the sensitivity of the magnitude of
age and MMSE score for AD diagnosis. The linear encoder can encode
the positional information of age and MMSE score in a fixed interval
more effectively to capture the magnitude features by using interval
mapping and sinusoidal function, thereby benefiting downstream clas-
sification tasks. While Qiu et al. [26] only normalize non-image data
and Golovanevsky et al. [51] just project non-image data into a long
vector by FCN. Another reason is that we adopt the joint attention
strategy to capture the interaction of multi-modal features consider-
ing the significance of multi-modal complementary information for
AD diagnosis. By jointly modeling one-dimensional long multi-modal
feature sequences, the joint attention strategy obtains global features
that integrate multi-modal interaction information, which is beneficial
for AD classification. While Qiu et al. [26] and Liu et al. [50] just
concatenated non-image data to image features directly to achieve
multi-modal data fusion. (2) Among the three competing methods
[26,50,51], the classification results of Qiu et al. [26] and Liu et al. [50]
are relatively better. Although Qiu et al. [26] directly concatenated
normalized non-image data to image features, it also achieved rela-
tively good results. This is because Qiu et al. [26] screened the SMRI
features obtained by FCN before the concatenation operation, and only
the disease probability maps with high risks are used in the next stage
of classification. These discriminative probability maps contribute to
improving classification performance. Compared with our DE-JANet,
Liu et al. [50] fused the multi-modal features by simple concatenation
and behaved slightly worse performance. This reflects the superiority of
our proposed method in terms of multi-modal data fusion. In addition,
Golovanevsky et al. [51] encoded the non-image data by FCN and self-
attention and fused the multi-modal features by cross-attention, but the
performance is still the worst, as it only used three central slices in each
dimension of sMRI for feature encoding and interacting. (3) The MCI
classification performance is slightly less significant. It is perhaps due to
the fact that the MCI classification is relatively more challenging since
MCI subjects show less obvious lesion characteristics compared with
AD subjects.

Besides, from Table 3, we find that our method does not achieve
the highest results on all metrics. Therefore, in order to provide a
comprehensive evaluation of our methods and three competing meth-
ods [26,50,51], we also generate ROC curves of AD classification and
MCI classification based on the results of one training session for
further analysis. From Fig. 8, we can observe that our DE-JANet method
consistently achieves the highest AUC score among all the methods
evaluated, indicating superior performance in classification. Although
the competing methods [26,50] show similar superiority with our DE-
JANet in AD classification with AUC scores of 0.9856 and 0.9876 on
the ADNI-2 dataset, respectively, our method achieves much higher
AUC values in MCI classification with values of 0.9937, reflecting the
excellent ability of the DE-JANet model for early AD screening.

5.3. Ablation studies

In order to evaluate the effectiveness of the modules and multi-
modal data used in DE-JANet, we design multiple comparing models,
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Fig. 8. ROC curves for AD classification (top) and MCI classification (bottom) on
ADNI-2 dataset.

i.e. the counterparts of DE-JANet, by removing the related modules
or data. As shown in Table 4, Dual-Encoder-Trans represents our DE-
JANet, and the rest are its counterparts. The results of ablation studies
are reported in Table 5.

5.3.1. Effectiveness of linear encoder

To evaluate the effectiveness of linear encoder, we compare the
classification results of Single-Encoder-Trans and Dual-Encoder-Trans.
In Single-Encoder-Trans, the age and MMSE score are normalized and
then projected into a 512-dimensional vector respectively by FCN
before being fed into the joint attention module.

From Table 5, we can observe that Dual-Encoder-Trans outperforms
Single-Encoder-Trans in all metrics for both AD and MCI classifica-
tion, which indicates that the linear encoder module can greatly im-
prove the classification performance. With the common FCN encoder,
Single-Encoder-Trans achieves only 0.6481 and 0.7846 ACC for AD and
MCI classification, respectively. Besides, compared with CNN-Encoder-
Trans, Single-Encoder-Trans does not show a significant improvement
in performance even with the addition of non-image data, indicating
that only normalizing and projecting non-image data is not sufficient
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to enhance the classification performance. Therefore, it is necessary to
set a reasonable encoding scheme to extract the low-level features of
non-image data before multi-modal fusion. In the linear encoder, we
adopt a sinusoidal function to extract the magnitude features of age
and MMSE score. Since there is a potential correlation between the
magnitude of age and MMSE score and the development of AD, for
example, the lower the MMSE score, the higher the model’s confidence
in predicting AD, the linear encoder extracting magnitude features is
helpful for improving the performance of AD classification.

5.3.2. Effectiveness of multi-modality

In order to verify the effectiveness of multi-modality, we make the
performance comparisons among CNN-Encoder-Trans, Linear-Encoder-
Trans, and Dual-Encoder-Trans.

From Table 5, we can have the following observations. (1) Our
Dual-Encoder-Trans outperforms the two variant methods on both
classification tasks, which is consistent with the assumption that the
multi-modal-based methods perform better than the single-modal-based
methods. This also implies that the features from different modal
data can support each other to improve classification performance. (2)
The Linear-Encoder-Trans shows better classification performance than
CNN-Encoder-Trans. For example, the ACC for AD and MCI classifica-
tion is 0.9630 versus 0.6519 and 0.8942 versus 0.7500, respectively.
This suggests that the magnitude features of age and MMSE score
extracted by Linear-Encoder-Trans have a significant impact on both
classification tasks, while the sMRI features extracted by CNN-Encoder-
Trans do not contribute much to the improvement of performance.
This is because we only use an ordinary CNN in Linear-Encoder-Trans,
which may be difficult to explore significant lesion information on sMRI
for accurate classification. As a result, The ordinary sMRI features are
needed to be combined with other modal features to obtain satisfied
classification performance. (3) The performance of Linear-Encoder-
Trans is close to that of Dual-Encoder-Trans in AD classification. It may
be because the significant difference in the distribution of MMSE score
between AD and NC subjects provides discriminative features for AD
classification, resulting in a good performance.

In addition, we also set up comparative experiments to analyze
the effects of age and MMSE score. As shown in Table 5, after the
encoded age and MMSE features are separately supplied into CNN-
Encoder-Trans, the performances of both resulting Dual-Encoder-Trans-
Na and Dual-Encoder-Trans-Nm are improved compared with CNN-
Encoder-Trans. And compared with Dual-Encoder-Trans, the Dual-
Encoder-Trans-Na without age and Dual-Encoder-Trans-Nm without
MMSE score perform less well. Fig. 9 clearly demonstrates the perfor-
mance improvement of the models after being separately supplied with
MMSE score and age features, revealing a significant upward trend. All
these indicate that both age and MMSE score can help improve the
performance of AD classification. From Fig. 9, we can also observe that
the MMSE score has a more significant performance improvement effect
compared to age.

5.3.3. Effectiveness of joint attention

In this group of experiments, we evaluated the effectiveness of
joint attention by comparing the performance of Dual-Encoder and
Dual-Encoder-Trans. The Dual-Encoder simply concatenates the fea-
tures extracted by the CNN encoder and linear encoder respectively and
inputs them into the token classification module.

From Table 5, we can discover that Dual-Encoder-Trans outper-
forms Dual-Encoder on both classification tasks, especially for MCI
classification. For example, the ACC for MCI classification is 0.9538
versus 0.9077. This intuitively shows that the joint attention module
can further improve classification performance. In the joint attention
module, we adopt a Transformer-based self-attention structure that
highlights the important features relevant to AD diagnosis and captures
the interaction between multi-modal data, so as to facilitate the clas-
sification tasks. Thus, it is reasonable that the joint attention module
makes sense.
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Table 4
Models with different modules and data for ablation studies.
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Model CNN encoder Linear Image data Non-image Non-image Joint attention
encoder (sMRI) data data
(MMSE) (Age)

Single- v v v v v

Encoder-

Trans

CNN- v v v

Encoder-

Trans

Linear- 4 v 4 v

Encoder-

Trans

Dual- v v v v v

Encoder-

Trans-Na

Dual- 4 v v v v

Encoder-

Trans-Nm

Dual-Encoder v v v v v

Dual- v v v v v v

Encoder-

Trans

Table 5
Results of AD classification and MCI classification obtained by DE-JANet and its counterparts on ADNI-2 dataset. The best results are in bold.
Model AD vs NC MCI vs NC
ACC PRE SEN SPE F1 ACC PRE SEN SPE F1

Single-Encoder-Trans 0.6481 0.6239 0.7692 0.5357 0.6779 0.7846 0.7455 0.8692 0.7000 0.8008
CNN-Encoder-Trans 0.6519 0.6241 0.7192 0.5893 0.6650 0.7500 0.7124 0.8500 0.6500 0.7708
Linear-Encoder-Trans 0.9630 0.9615 0.9615 0.9643 0.9615 0.8942 0.9767 0.8077 0.9808 0.8842
Dual-Encoder-Trans-Na 0.9278 0.8839 0.9808 0.8786 0.9294 0.9423 0.9554 0.9308 0.9538 0.9415
Dual-Encoder-Trans-Nm 0.6667 0.6176 0.8077 0.5357 0.7000 0.7596 0.7234 0.8500 0.6692 0.7801
Dual-Encoder 0.9630 0.9444 0.9808 0.9464 0.9623 0.9077 0.8727 0.9577 0.8577 0.9128
Dual-Encoder-Trans 0.9722 0.9623 0.9808 0.9643 0.9714 0.9538 0.9802 0.9269 0.9808 0.9523

Table 6

Referential comparisons of the state-of-the-art studies using ADNI dataset on AD classification, MCI classification, and 3-class classification. The best results are in bold. ‘-’ indicates

that this result was not reported in the literature.

AD vs NC MCI vs NC AD vs MCI vs NC

Method Data ACC SEN SPE ACC SEN SPE ACC SEN SPE
Ning et al. [32] 2021 SMRI, PET 0.969 0.957 0.980 0.821 0.871 0.723 - - -
Zhang et al. [52] 2021 SMRI 0.920 0.903 0.931 0.801 0.782 0.803 0.629 0.645 0.818
Wang et al. [53] 2022 SMRI 0.921 0.962 0.913 0.797 0.772 0.790 0.627 0.661 0.798
Cai et al. [54] 2023 SMRI 0.921 0.917 0.925 0.824 0.836 0.813 - - -
Zhu et al. [55] 2023 sMRI, PET, CSF 0.968 0.986 0.955 0.866 0.933 0.724 - - -
our DE-JANet sMRI, Age, MMSE 0.972 0.981 0.964 0.954 0.927 0.981 0.725 0.724 0.862

Effectiveness of Age and MMSE score
1.00

0.95 __—
+ Age

0.90

0.80 + MMSE score

0.70
=@ AD vs NC
=—@— MCI vs NC

0.65

0.60

CNN-Encoder-Trans Dual-Encoder-Trans-Na Dual-Encoder-Trans
Fig. 9. Performance (F1 score) comparison of DE-JANet and its counterparts on
ADNI-2 dataset for analyzing the effectiveness of age and MMSE score. Among
these counterparts, supplying the MMSE features into CNN-Encoder-Trans yields Dual-
Encoder-Trans-Na, and further supplying age features into Dual-Encoder-Trans-Na yields
Dual-Encoder-Trans.

5.4. Discussion

5.4.1. Diagnosis performance

We roughly summarize and compare our results with those of
several state-of-the-art methods [32,52-55] using the AD diagnosis
results reported in the literature. Besides binary classification, we also
show the performance of 3-class classification, i.e. AD vs MCI vs NC.
For 3-class classification, our model is trained using all subjects in the
ADNI-1 dataset and sharing the same experimental setting as binary
classification. As we can observe from Table 6, our proposed method
achieves comparable performance on AD classification and advanced
performance on MCI classification as well as 3-class classification. Note
that due to the differences in data, the direct comparison among these
methods mentioned above is impossible and unfair, but we can still
draw some conjectures.

First, multi-modal data, which provides more comprehensive in-
formation by complementing each other between different modalities,
can help improve the performance of models. For example, Zhang
et al. [52], Wang et al. [53] and Cai et al. [54] performing classification
only based on sMRI show worse performance, while the remaining
methods obtain better results by using multi-modal data. Second, for
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Fig. 10. The visual feature maps from three subjects with clinically confirmed AD,
MCI, and NC (from left to right).

multi-modal-based methods, the type of data modalities used for fusion
is not crucial provided that the data and methods are effective, due
to the fact that the results of [32,55] obtained from fusing images of
different imaging ways and that of our DE-JANet obtained from fusing
image and non-image data are similar.

5.4.2. Correlation analysis of sMRI features with AD diagnosis

In order to explain model classification decisions, we analyze the
correlation between sMRI features and AD diagnosis by visualizing the
sMRI features extracted by the CNN encoder as shown in Fig. 10. The
visual feature maps highlight high-risk brain regions associated with
AD pathology, where the blue and red indicate the low-(<0.5) and
high-risk(>0.5) areas of AD. From Fig. 10, we can discover that the
sMRI feature map of the first subject with a clinical diagnosis of AD
shows much darker red, while that of the third subject with NC is
basically blue, and that of the second subject with MCI is in the middle.
We can assess the anatomical consistency of AD-suggestive morphology
hot spots from these darker area distributions, thus the visual feature
maps can act as a means to demonstrate structures most affected by
neuropathological changes in AD and explain the model decision to
some extent.

5.4.3. Limitations and future work

Though our proposed DE-JANet method achieves satisfactory per-
formance in AD-related diagnosis, there are still several limitations that
restrict the exploration of pathological relationships.

First, We analyze the mapping relationship among image data,
non-image data, and AD diagnosis. However, we do not explore the
correlation between image and non-image data for each subject, which
may help reveal underlying pathological responses. Besides, further
analysis should be conducted on the features within the site to better
support intelligent diagnosis. Second, we analyze the correlation be-
tween sMRI features and AD diagnosis to explain the model decision
to some extent. However, how the image and non-image features
complement each other is unclear in the joint attention module, we can
further explore this in the future to support a convincible intelligent
diagnosis.

In addition to these improvement efforts, enthusiastic readers may
consider expanding this model to the diagnosis of other brain diseases
to improve the automation level in the field of neuroimaging analysis.
Besides, genetic data and functional imaging data can be introduced
to explore more advanced methods for multi-modal data fusion and
diagnostic performance improvement.

6. Conclusion
In this study, we propose a unified network DE-JANet consist-

ing of a dual encoder module, a joint attention module, and a to-
ken classification module, and adopt multi-modal data consisting of
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sMRI, age, and MMSE score for AD-related diagnosis. The dual encoder
module extracts spatial features of sMRI and magnitude features of
age and MMSE score, which serve as a prior basis for the following
joint attention module. The joint attention module can effectively fuse
image and non-image features and captures the interaction between
them, so as to provide significant token features for classification. The
comparisons with the existing state-of-the-art methods and ablation
studies on the ADNI datasets demonstrate that our method can merge
multi-modal data effectively and achieve advanced classification per-
formance. Moreover, we explore the interpretability of the model by
analyzing the correlation between sMRI features and AD diagnosis, but
we can further analyze the complementarity between the image and
non-image features to interpret the model decisions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Key R&D Program of China
[2018AAA0102100]; the National Natural Science Foundation of China
[U22A2034, 62376287]; the Key Research and Development Program
of Hunan Province [2022SK2054]; International Science and Technol-
ogy Innovation Joint Base of Machine Vision and Medical Image Pro-
cessing in Hunan Province [2021CB1013]; the Natural Science Foun-
dation of Hunan Province [2022JJ30762]. Data used in this work were
acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database.

References

[1] W. Jagust, Vulnerable neural systems and the borderland of brain aging and
neurodegeneration, Neuron 77 (2) (2013) 219-234, http://dx.doi.org/10.1016/
j-neuron.2013.01.002.

[2] 2021 Alzheimer’s disease facts and figures, Alzheimer’s Dementia 17 (3) (2021)
327-406, http://dx.doi.org/10.1002/alz.12328.

[3] M. Khojaste-Sarakhsi, S.S. Haghighi, S.M.T.F. Ghomi, E. Marchiori, Deep learning
for Alzheimer’s disease diagnosis: A survey, Artif. Intell. Med. 130 (2022)
102332, http://dx.doi.org/10.1016/j.artmed.2022.102332.

[4] J. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-Gonzalez, A. Routier, S. Bot-
tani, D. Dormont, S. Durrleman, NinonBurgos, O. Colliot, Convolutional neural
networks for classification of Alzheimer’s disease: Overview and reproducible
evaluation, Med. Image Anal. 63 (2020) 101694, http://dx.doi.org/10.1016/j.
media.2020.101694.

[5] G.M. McKhann, D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr, C.H.
Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C.
Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, C.H.
Phelps, The diagnosis of dementia due to Alzheimer’s disease: Recommendations
from the national institute on Aging-Alzheimer’s association workgroups on
diagnostic guidelines for Alzheimer’s disease, Alzheimer’s Dementia 7 (3) (2011)
263-269, http://dx.doi.org/10.1016/j.jalz.2011.03.005.

[6] G.B. Frisoni, N.C. Fox, C.R. Jack Jr, P. Scheltens, P.M. Thompson, The clinical
use of structural MRI in Alzheimer disease, Nat. Rev. Neurol. 6 (2) (2010) 67-77,
http://dx.doi.org/10.1038/nrneurol.2009.215.

[7] S. Fathi, M. Ahmadi, A. Dehnad, Early diagnosis of Alzheimer’s disease based
on deep learning: A systematic review, Comput. Biol. Med. 146 (2022) 105634,
http://dx.doi.org/10.1016/j.compbiomed.2022.105634.

[8] F. Li, M. Liu, A.D.N. Initiative, Alzheimer’s disease diagnosis based on multiple
cluster dense convolutional networks, Comput. Med. Imaging Graph. 70 (2018)
101-110, http://dx.doi.org/10.1016/j.compmedimag.2018.09.009.

[9] C. Lian, M. Liu, Y. Pan, D. Shen, Attention-guided hybrid network for dementia
diagnosis with structural MR images, IEEE Trans. Cybern. 52 (4) (2022)
1992-2003, http://dx.doi.org/10.1109/TCYB.2020.3005859.

[10] W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, Y. Yang, G. Guo, M. Xiao, M. Du, X.
Qu, A.D.N. Initiative, Convolutional neural networks-based MRI image analysis
for the Alzheimer’s disease prediction from mild cognitive impairment, Front.
Neurosci. 12 (2018) 777, http://dx.doi.org/10.3389/fnins.2018.00777.

[11] H. Wang, Y. Shen, S. Wang, T. Xiao, L. Deng, X. Wang, X. Zhao, Ensemble
of 3D densely connected convolutional network for diagnosis of mild cognitive
impairment and Alzheimer’s disease, Neurocomputing 333 (14) (2019) 145-156,
http://dx.doi.org/10.1016/j.neucom.2018.12.018.


http://dx.doi.org/10.1016/j.neuron.2013.01.002
http://dx.doi.org/10.1016/j.neuron.2013.01.002
http://dx.doi.org/10.1016/j.neuron.2013.01.002
http://dx.doi.org/10.1002/alz.12328
http://dx.doi.org/10.1016/j.artmed.2022.102332
http://dx.doi.org/10.1016/j.media.2020.101694
http://dx.doi.org/10.1016/j.media.2020.101694
http://dx.doi.org/10.1016/j.media.2020.101694
http://dx.doi.org/10.1016/j.jalz.2011.03.005
http://dx.doi.org/10.1038/nrneurol.2009.215
http://dx.doi.org/10.1016/j.compbiomed.2022.105634
http://dx.doi.org/10.1016/j.compmedimag.2018.09.009
http://dx.doi.org/10.1109/TCYB.2020.3005859
http://dx.doi.org/10.3389/fnins.2018.00777
http://dx.doi.org/10.1016/j.neucom.2018.12.018

Y. Dai et al.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. AlSaeed, S.F. Omar, Brain MRI analysis for Alzheimer’s disease diagnosis using
CNN-based feature extraction and machine learning, Sensors 22 (8) (2022) 2911,
http://dx.doi.org/10.3390/522082911.

V.C. Pangman, J. Sloan, L. Guse, An examination of psychometric properties
of the mini-mental state examination and the standardized mini-mental state
examination: Implications for clinical practice, Appl. Nurs. Res. 13 (4) (2000)
209-213, http://dx.doi.org/10.1053/apnr.2000.9231.

R. Peters, Ageing and the brain, Postgrad. Med. J. 82 (964) (2006) 84-88,
http://dx.doi.org/10.1136/pgm;j.2005.036665.

X. Gao, H. Cai, M. Liu, A hybrid multi-scale attention convolution and aging
transformer network for Alzheimer’s disease diagnosis, IEEE J. Biomed. Health
Inf. (2023) 1-8, http://dx.doi.org/10.1109/JBHI.2023.3270937.

A. Chartsias, G. Papanastasiou, C. Wang, S. Semple, D.E. Newby, R. Dhar-
makumar, S.A. Tsaftaris, Disentangle, align and fuse for multimodal and
semi-supervised image segmentation, IEEE Trans. Med. Imaging 40 (3) (2021)
781-792, http://dx.doi.org/10.1109/TMI.2020.3036584.

S.P. Yadav, S. Yadav, Image fusion using hybrid methods in multimodality
medical images, Med. Biol. Eng. Comput. 58 (2020) 669-687, http://dx.doi.org/
10.1007/5117-020-02136-6.

T. Baltrusaitis, C. Ahuja, L.-P. Morency, Multimodal machine learning: A survey
and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell. 41 (2) (2019) 423-443,
http://dx.doi.org/10.1109/TPAMI.2018.2798607.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L.
Kaiser, I. Polosukhin, Attention is all you need, in: Neural Information Processing
Systems, 2017, http://dx.doi.org/10.1109/CVPR.2016.90.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An
image is worth 16x16 words: Transformers for image recognition at scale, in:
International Conference on Learning Representations, 2021, arXiv:2010.11929.
P. Xu, X. Zhu, D.A. Clifton, Multimodal learning with transformers: A survey,
2022, arXiv:2206.06488.

S. Khan, M. Naseer, M. Hayat, S.W. Zamir, F.S. Khan, M. Shah, Transformers in
vision: A survey, ACM Comput. Surv. 54 (10s) (2022) 1-41, http://dx.doi.org/
10.1145/3505244.

Y. Zhao, G. Wang, C. Tang, C. Luo, W. Zeng, Z.-J. Zha, A battle of network
structures: An empirical study of CNN, transformer, and MLP, 2021, arXiv:
2108.13002.

J. Shi, X. Zheng, Y. Li, Q. Zhang, S. Ying, Multimodal neuroimaging feature
learning with multimodal multimodal stacked deep polynomial networks for
diagnosis of Alzheimer’s disease, IEEE J. Biomed. Health Inf. 22 (1) (2018)
173-183, http://dx.doi.org/10.1109/JBHI.2017.2655720.

H.-I. Suk, S.-W. Lee, Dinggang Shen & The Alzheimer’s Disease Neuroimaging
Initiative, Deep sparse multi-task learning for feature selection in Alzheimer’s
disease diagnosis, Brain Struct. Funct. 221 (5) (2016) 2569-2587, http://dx.doi.
org/10.1007/s00429-015-1059-y.

S. Qiu, P.S. Joshi, M.I. Mille, C. Xue, X. Zhou, C. Karjadi, G.H. Chang, A.S. Joshi,
B. Dwyer, S. Zhu, M. Kaku, Y. Zhou, Y.J. Alderazi, A. Swaminathan, S. Kedar, M.-
H. Saint-Hilaire, S.H. Auerbach, J. Yuan, E.A. Sartor, R. Au, V.B. Kolachalama,
Development and validation of an interpretable deep learning framework for
Alzheimer’s disease classification, Brain 143 (6) (2020) 1920-1933, http://dx.
doi.org/10.1093/brain/awaal37.

T. Wang, X. Chen, X. Zhang, S. Zhou, Q. Feng, M. Huang, Multi-view imputation
and cross-attention network based on incomplete longitudinal and multimodal
data for conversion prediction of mild cognitive impairment, 2023, arXiv:2206.
08019.

T. Zhou, K.-H. Thung, M. Liu, F. Shi, C. Zhang, D. Shen, Multi-modal latent
space inducing ensemble SVM classifier for early dementia diagnosis with
neuroimaging data, Med. Image Anal. 60 (2020) 101630, http://dx.doi.org/10.
1016/j.media.2019.101630.

T. Tong, K. Gray, Q. Gao, L. Chen, D. Rueckert, Multi-modal classification of
Alzheimer’s disease using nonlinear graph fusion, Pattern Recognit. 63 (1) (2017)
171-181, http://dx.doi.org/10.1016/j.patcog.2016.10.009.

X. Bi, X. Hu, H. Wu, Y. Wang, Multimodal data analysis of Alzheimer’s disease
based on clustering evolutionary random forest, IEEE J. Biomed. Health Inf. 24
(10) (2020) 2973-2983, http://dx.doi.org/10.1109/JBHIL.2020.2973324.

S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M.J. Fulham,
ADNI, Multimodal neuroimaging feature learning for multiclass diagnosis of
Alzheimer’s disease, IEEE Trans. Biomed. Eng. 62 (4) (2015) 1132-1140, http:
//dx.doi.org/10.1109/TBME.2014.2372011.

Z. Ning, Q. Xiao, Q. Feng, W. Chen, Y. Zhang, Relation-induced multi-modal
shared representation learning for Alzheimer’s disease diagnosis, IEEE Trans.
Med. Imaging 40 (6) (2021) 1632-1645, http://dx.doi.org/10.1109/TMI.2021.
3063150.

B. Lei, P. Yang, T. Wang, S. Chen, D. Ni, Relational-regularized discriminative
sparse learning for Alzheimer’s disease diagnosis, IEEE Trans. Cybern. 47 (4)
(2017) 1102-1113, http://dx.doi.org/10.1109/TCYB.2016.2644718.

F. Yang, H. Wang, S. Wei, G. Sun, Y. Chen, L. Tao, Multi-model adaptive fusion-
based graph network for Alzheimer’s disease prediction, Comput. Biol. Med. 153
(2023) 106518, http://dx.doi.org/10.1016/j.compbiomed.2022.106518.

11

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Computers in Biology and Medicine 165 (2023) 107396

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-
end object detection with transformers, in: European Conference on Computer
Vision, 2020, http://dx.doi.org/10.48550/arXiv.2005.12872.

W. Wang, C. Chen, M. Ding, H. Yu, S. Zha, J. Li, Transbts: Multimodal brain
tumor segmentation using transformer, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Vol. 12901, 2021, pp.
109—119, http://dx.doi.org/10.1007/978-3-030-87193-2_11.

J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A.L. Yuille, Y. Zhou,
TransUNet: Transformers make strong encoders for medical image segmentation,
2021, http://dx.doi.org/10.48550/arXiv.2102.04306.

O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Vol. 9351, 2015, pp. 234-241,
http://dx.doi.org/10.1007/978-3-319-24574-4_28.

Y. Xie, J. Zhang, C. Shen, Y. Xia, CoTr: Efficiently bridging CNN and transformer
for 3D medical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Vol. 12903, 2021, pp.
171-180, http://dx.doi.org/10.1007/978-3-030-87199-4 _16.

Y. Dai, Y. Gao, F. Liu, TransMed: Transformers advance multi-modal medical
image classification, Diagnostics 11 (8) (2021) 1384, http://dx.doi.org/10.3390/
diagnostics11081384.

J. Lu, D. Batra, D. Parikh, S. Lee, VILBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks, in: International Conference
on Neural Information Processing Systems, Vol. 32, 2019, pp. 13-23, http:
//dx.doi.org/10.48550/arXiv.1908.02265.

W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, J. Dai, VL-BERT: Pre-training of
generic visual-linguistic representations, in: International Conference on Learning
Representations, 2020, http://dx.doi.org/10.48550/arXiv.1908.08530.

C. Li, M. Yan, H. Xu, F. Luo, W. Wang, B. Bi, S. Huang, SemVLP: Vision-language
pre-training by aligning semantics at multiple levels, 2021, arXiv:2103.07829.
M.W. Weiner, P.S. Aisen, C.R. Jack Jr., W.J. Jagust, J.Q. Trojanowski, L. Shaw,
A.J. Saykin, J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H.
Soares, P. Snyder, E. Siemers, W. Potter, P.E. Cole, A.D.N.I. Mark Schmidt, The
Alzheimer’s disease neuroimaging initiative: Progress report and future plans,
Alzheimer’s Dementia 6 (3) (2010) 202-211, http://dx.doi.org/10.1016/j.jalz.
2010.03.007.

J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van der Kouwe, R. Gollub, D.
Kennedy, F. Schmitt, G. Brown, J. MacFall, B. Fischl, A. Dale, Reliability in
multi-site structural MRI studies: Effects of gradient non-linearity correction on
phantom and human data, Neuroimage 30 (2) (2006) 436-443, http://dx.doi.
org/10.1016/j.neuroimage.2005.09.046.

P.A. Narayana, W.W. Brey, M.V. Kulkarni, C.L. Sievenpiper, Compensation for
surface coil sensitivity variation in magnetic resonance imaging, Magn. Reson.
Imaging 6 (3) (1988) 271-274, http://dx.doi.org/10.1016,/0730-725X(88)90401-
8.

J. Sled, A. Zijdenbos, A. Evans, A nonparametric method for automatic correction
of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging 17 (1) (1998)
87-97, http://dx.doi.org/10.1109/42.668698.

D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, D. Hawkes, Nonrigid
registration using free-form deformations: Application to breast MR images,
IEEE Trans. Med. Imaging 18 (8) (1999) 712-721, http://dx.doi.org/10.1109/
42.796284.

M. Jenkinson, C.F. Beckmann, T.E.J. Behrens, M.W. Woolrich, S.M. Smith, FSL,
Neurolmage 62 (2) (2012) 782-790, http://dx.doi.org/10.1016/j.neuroimage.
2011.09.015.

S. Liu, C. Yadav, C. Fernandez-Granda, N. Razavian, On the design of con-
volutional neural networks for automatic detection of alzheimer’s disease, in:
Machine Learning for Health NeurIPS Workshop, vol. 116, 2020, pp. 184-201,
http://dx.doi.org/10.48550/arXiv.1911.03740.

M. Golovanevsky, C. Eickhoff, R. Singh, Multimodal attention-based deep learn-
ing for Alzheimer’s disease diagnosis, J. Am. Med. Inform. Assoc. 29 (12) (2022)
2014-2022, http://dx.doi.org/10.1093/jamia/ocac168.

Z. Zhang, L. Gao, G. Jin, L. Guo, Y. Yao, L. Dong, J. Han, the Alzheimer’s Disease
Neurolmaging Initiative, THAN: Task-driven hierarchical attention network for
the diagnosis of mild cognitive impairment and Alzheimer’s disease, Quant.
Imaging Med. Surg. 11 (7) (2021) 3338-3354, http://dx.doi.org/10.21037/qims-
21-91.

C. Wang, Y. Wei, J. Li, X. Li, Y. Liu, Q. Hu, Y. Wang, Asymmetry-enhanced
attention network for Alzheimer’s diagnosis with structural magnetic resonance
imaging, Comput. Biol. Med. 151 (2022) 106282, http://dx.doi.org/10.1016/j.
compbiomed.2022.106282.

H. Cai, Q. Zhang, Y. Long, Prototype-guided multi-scale domain adaptation for
Alzheimer’s disease detection, Comput. Biol. Med. 154 (2023) 106570, http:
//dx.doi.org/10.1016/j.compbiomed.2023.106570.

Q. Zhu, B. Xu, J. Huang, H. Wang, R. Xu, W. Shao, D. Zhang, Deep multi-modal
discriminative and interpretability network for Alzheimer’s disease diagnosis,
IEEE Trans. Med. Imaging 42 (5) (2023) 1472-1483, http://dx.doi.org/10.1109/
TMI.2022.3230750.


http://dx.doi.org/10.3390/s22082911
http://dx.doi.org/10.1053/apnr.2000.9231
http://dx.doi.org/10.1136/pgmj.2005.036665
http://dx.doi.org/10.1109/JBHI.2023.3270937
http://dx.doi.org/10.1109/TMI.2020.3036584
http://dx.doi.org/10.1007/5117-020-02136-6
http://dx.doi.org/10.1007/5117-020-02136-6
http://dx.doi.org/10.1007/5117-020-02136-6
http://dx.doi.org/10.1109/TPAMI.2018.2798607
http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2206.06488
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1145/3505244
http://arxiv.org/abs/2108.13002
http://arxiv.org/abs/2108.13002
http://arxiv.org/abs/2108.13002
http://dx.doi.org/10.1109/JBHI.2017.2655720
http://dx.doi.org/10.1007/s00429-015-1059-y
http://dx.doi.org/10.1007/s00429-015-1059-y
http://dx.doi.org/10.1007/s00429-015-1059-y
http://dx.doi.org/10.1093/brain/awaa137
http://dx.doi.org/10.1093/brain/awaa137
http://dx.doi.org/10.1093/brain/awaa137
http://arxiv.org/abs/2206.08019
http://arxiv.org/abs/2206.08019
http://arxiv.org/abs/2206.08019
http://dx.doi.org/10.1016/j.media.2019.101630
http://dx.doi.org/10.1016/j.media.2019.101630
http://dx.doi.org/10.1016/j.media.2019.101630
http://dx.doi.org/10.1016/j.patcog.2016.10.009
http://dx.doi.org/10.1109/JBHI.2020.2973324
http://dx.doi.org/10.1109/TBME.2014.2372011
http://dx.doi.org/10.1109/TBME.2014.2372011
http://dx.doi.org/10.1109/TBME.2014.2372011
http://dx.doi.org/10.1109/TMI.2021.3063150
http://dx.doi.org/10.1109/TMI.2021.3063150
http://dx.doi.org/10.1109/TMI.2021.3063150
http://dx.doi.org/10.1109/TCYB.2016.2644718
http://dx.doi.org/10.1016/j.compbiomed.2022.106518
http://dx.doi.org/10.48550/arXiv.2005.12872
http://dx.doi.org/10.1007/978-3-030-87193-2_11
http://dx.doi.org/10.48550/arXiv.2102.04306
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-030-87199-4_16
http://dx.doi.org/10.3390/diagnostics11081384
http://dx.doi.org/10.3390/diagnostics11081384
http://dx.doi.org/10.3390/diagnostics11081384
http://dx.doi.org/10.48550/arXiv.1908.02265
http://dx.doi.org/10.48550/arXiv.1908.02265
http://dx.doi.org/10.48550/arXiv.1908.02265
http://dx.doi.org/10.48550/arXiv.1908.08530
http://arxiv.org/abs/2103.07829
http://dx.doi.org/10.1016/j.jalz.2010.03.007
http://dx.doi.org/10.1016/j.jalz.2010.03.007
http://dx.doi.org/10.1016/j.jalz.2010.03.007
http://dx.doi.org/10.1016/j.neuroimage.2005.09.046
http://dx.doi.org/10.1016/j.neuroimage.2005.09.046
http://dx.doi.org/10.1016/j.neuroimage.2005.09.046
http://dx.doi.org/10.1016/0730-725X(88)90401-8
http://dx.doi.org/10.1016/0730-725X(88)90401-8
http://dx.doi.org/10.1016/0730-725X(88)90401-8
http://dx.doi.org/10.1109/42.668698
http://dx.doi.org/10.1109/42.796284
http://dx.doi.org/10.1109/42.796284
http://dx.doi.org/10.1109/42.796284
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.48550/arXiv.1911.03740
http://dx.doi.org/10.1093/jamia/ocac168
http://dx.doi.org/10.21037/qims-21-91
http://dx.doi.org/10.21037/qims-21-91
http://dx.doi.org/10.21037/qims-21-91
http://dx.doi.org/10.1016/j.compbiomed.2022.106282
http://dx.doi.org/10.1016/j.compbiomed.2022.106282
http://dx.doi.org/10.1016/j.compbiomed.2022.106282
http://dx.doi.org/10.1016/j.compbiomed.2023.106570
http://dx.doi.org/10.1016/j.compbiomed.2023.106570
http://dx.doi.org/10.1016/j.compbiomed.2023.106570
http://dx.doi.org/10.1109/TMI.2022.3230750
http://dx.doi.org/10.1109/TMI.2022.3230750
http://dx.doi.org/10.1109/TMI.2022.3230750

	DE-JANet: A unified network based on dual encoder and joint attention for Alzheimer's disease classification using multi-modal data
	Introduction
	Related work
	Multi-modal-based methods
	ViT-based methods

	Data acquisition and pre-processing
	Methodology
	Dual encoder module
	CNN encoder for image data
	Linear encoder for non-image data

	Joint attention module
	Token classification module

	Experiments and analyses
	Experimental settings
	Comparison experiments
	Comparisons with different feature fusion strategies
	Comparisons with competing methods

	Ablation studies
	Effectiveness of linear encoder
	Effectiveness of multi-modality
	Effectiveness of joint attention

	Discussion
	Diagnosis performance
	Correlation analysis of sMRI features with AD diagnosis
	Limitations and future work


	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


